论文标题

记忆指导的图像使用延时数据去割伤

Memory-guided Image De-raining Using Time-Lapse Data

论文作者

Cho, Jaehoon, Kim, Seungryong, Sohn, Kwanghoon

论文摘要

本文解决了单个图像脱落的问题,即从雨水掩盖的单个图像中恢复清洁和无雨的背景场景的任务。尽管最近的进步采用了现实世界中的延时数据来克服对配对雨清洁图像的需求,但它们仅限于充分利用延时数据。主要原因是,就网络体系结构而言,由于缺乏内存组件,它们在训练过程中无法捕获长期的降雨条纹信息。为了解决这个问题,我们提出了一个基于内存网络的新型网络体系结构,该网络架构明确有助于捕获延时数据中的长期降雨条纹信息。我们的网络包括编码器网络和存储网络。从编码器中提取的功能将在存储网络中读取和更新,其中包含几个存储器项目来存储雨水感知的特征表示。通过阅读/更新操作,内存网络根据查询检索相关的内存项,使内存项可以表示延时数据中包含的各种降雨条纹。为了提高内存功能的歧视力,我们还提出了一种新颖的背景选择性美白(BSW)损失,以通过删除背景信息在内存网络中仅捕获雨条信息。标准基准的实验结果证明了我们方法的有效性和优势。

This paper addresses the problem of single image de-raining, that is, the task of recovering clean and rain-free background scenes from a single image obscured by a rainy artifact. Although recent advances adopt real-world time-lapse data to overcome the need for paired rain-clean images, they are limited to fully exploit the time-lapse data. The main cause is that, in terms of network architectures, they could not capture long-term rain streak information in the time-lapse data during training owing to the lack of memory components. To address this problem, we propose a novel network architecture based on a memory network that explicitly helps to capture long-term rain streak information in the time-lapse data. Our network comprises the encoder-decoder networks and a memory network. The features extracted from the encoder are read and updated in the memory network that contains several memory items to store rain streak-aware feature representations. With the read/update operation, the memory network retrieves relevant memory items in terms of the queries, enabling the memory items to represent the various rain streaks included in the time-lapse data. To boost the discriminative power of memory features, we also present a novel background selective whitening (BSW) loss for capturing only rain streak information in the memory network by erasing the background information. Experimental results on standard benchmarks demonstrate the effectiveness and superiority of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源