论文标题
强h $ _2 $ o和CO排放功能在KELT-20B频谱中由Stellar UV辐射驱动
Strong H$_2$O and CO emission features in the spectrum of KELT-20b driven by stellar UV irradiation
论文作者
论文摘要
知道你的明星,知道你的行星氛围。每个具有大气测量的系外行星围绕恒星绕,恒星环境直接影响行星大气。在这里,我们介绍了超热木星Kelt-20b的发射光谱,该发射光谱在宿主星形和行星大气热结构之间提供了观察性联系。目前,它是$ t_ {eq} \ sim $ 2200K范围内绕A型A型恒星绕的$ T_ {eq} \ sim $ 2200k范围内唯一具有热排放测量值的行星。通过将其与FGK恒星周围的其他类似的超热木星进行比较,我们可以更好地了解不同的宿主恒星如何影响行星气氛。发射光谱覆盖0.6至4.5 $μm$,其中包括苔丝,HST WFC3/G141和Spitzer 4.5 $μm$ channel的数据。 Kelt -20b具有1.4 $ $ $ $的水功能度量,s $ _ {h_2o} $ = -0.097 $ \ pm $ 0.02,在WFC3/g141之间的黑体亮度温度差为528K(t $ _b $ _b $ _B $ = 2402 $ = 2402 $ \ $ \ $ $ \ $ $ \ $ \ $°| (t $ _b $ = 2930 $ \ pm59 $ k)。这些非常大的H $ _2 $ O和CO排放功能与A-Type主机之星相结合,使Kelt-20b成为其他类似的热木星。预计其宿主星(T $ _ {eff} = 8720 \ pm250 $ k)的大量频率,NUV和光辐射将是驱动其强大的热反演和基于先前的凤凰模型计算的突出发射特征的关键。
Know thy star, know thy planetary atmosphere. Every exoplanet with atmospheric measurements orbits around a star, and the stellar environment directly affects the planetary atmosphere. Here we present the emission spectrum of ultra-hot Jupiter KELT-20b which provides an observational link between host star properties and planet atmospheric thermal structure. It is currently the only planet with thermal emission measurements in the $T_{eq}\sim$2200K range that orbits around an early A-type star. By comparing it with other similar ultra-hot Jupiters around FGK stars, we can better understand how different host star types influence planetary atmospheres. The emission spectrum covers 0.6 to 4.5 $μm$ with data from TESS, HST WFC3/G141, and Spitzer 4.5 $μm$ channel. KELT-20b has a 1.4 $μm$ water feature strength metric of S$_{H_2O}$ = -0.097$\pm$0.02 and a blackbody brightness temperature difference of 528K between WFC3/G141 (T$_b$=2402$\pm$14K) and Spitzer 4.5 $μm$ channel (T$_b$=2930$\pm59$K). These very large H$_2$O and CO emission features combined with the A-type host star make KELT-20b a unique planet among other similar hot Jupiters. The abundant FUV, NUV, and optical radiation from its host star (T$_{eff}=8720\pm250$K) is expected to be the key that drives its strong thermal inversion and prominent emission features based on previous PHOENIX models calculations.