论文标题

重建雷利 - 纳德(Rayleigh-Bénard)从仅温度测量中流出

Reconstructing Rayleigh-Bénard flows out of temperature-only measurements using nudging

论文作者

Agasthya, Lokahith, Di Leoni, Patricio Clark, Biferale, Luca

论文摘要

推动是一种数据同化技术,已被证明能够从一组部分时空测量值中重建几个高度湍流。在这项研究中,我们在雷利 - 纳德对流系统中以不同水平的湍流中的温度场上应用了轻度的方案。我们在重建流量以及向完全同步的过渡方面的成功评估全局和规模,同时改变了欧拉或拉格朗日域上稀疏测量所提供的信息的数量和质量。我们通过研究裸场的光谱以及对努塞尔特数量测量的传热特性的正确预测来评估系统动态行为的统计再现。此外,我们根据各种瑞利数字在解决方案的复杂性方面分析结果,并讨论了仅在仅一个部分部分的部分或完整测量的系统(特别是温度)的部分或完整测量的系统的所有状态变量方面的更一般性问题。这项研究阐明了热驱动流中速度和温度之间的相关性以及仅通过温度作用来控制它们的可能性。

Nudging is a data assimilation technique that has proved to be capable of reconstructing several highly turbulent flows from a set of partial spatiotemporal measurements. In this study we apply the nudging protocol on the temperature field in a Rayleigh-Bénard Convection system at varying levels of turbulence. We assess the global, as well as scale by scale, success in reconstructing the flow and the transition to full synchronization while varying both the quantity and quality of the information provided by the sparse measurements either on the Eulerian or Lagrangian domain. We asses the statistical reproduction of the dynamic behaviour of the system by studying the spectra of the nudged fields as well as the correct prediction of the heat transfer properties as measured by the Nusselt number. Further, we analyze the results in terms of the complexity of the solutions at various Rayleigh numbers and discuss the more general problem of predicting all state variables of a system given partial or full measurements of only one subset of the fields, in particular temperature. This study sheds new light on the correlation between velocity and temperature in thermally driven flows and on the possibility to control them by acting on the temperature only.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源