论文标题
$ b_c $系统的质谱和波函数
The mass spectrum and wave functions of the $B_c$ system
论文作者
论文摘要
$ B_C $系统的频谱和相对论波函数通过求解完整的Salpeter方程进行了研究。重点是研究每个$ j^p $状态的部分波。我们的研究表明,$ j^p $状态有三类。第一个类别包含$ 0^ - $和$ 0^+$状态,该状态为$ {}^1S_0 $主导状态,分别为$ p $ wave和$ {}^3p_0 $ prinistant $ prinistate,分别为$ s $ wave。第二类包括自然平价状态,例如$ 1^ - $,$ 2^+$,$ 3^ - $等。以$ 1^ - $状态为例,我们在两种情况下进行研究。一个是$ {}^3S_1 $主导状态,具有少量$ p $和$ d $ waves,另一个是$ {}^3d_1 $ prinestate状态,但包含大量$ s $和$ p $ wave的组件。第三类包括不自然的奇偶校验状态,例如$ 1^+$,$ 2^ - $,$ 3^+$等。对于$ 1^+$ spectrum,将各州分组为具有不同径向量子数的成对。每对包含两个$ {}^1p_1- {}^3p_1 $混合状态,相应的混合角是通过使用相对论波函数来计算的。
The spectrum and relativistic wave functions of $B_c$ system are investigated via solving the complete Salpeter equation. Emphases are put on the study of the partial waves of each $J^P$ state. Our study shows that there are three categories of $J^P$ states. The first category contains $0^-$ and $0^+$ states, which are ${}^1S_0$ dominant state with a small amount of $P$ wave and ${}^3P_0$ dominant state with a small amount of $S$ wave, respectively. The second category includes the natural parity states, such as $1^-$, $2^+$, $3^-$, etc. Taking the $1^-$ state as an example, we study it in two cases. One is the ${}^3S_1$ dominant state with a small amount of $P$ and $D$ waves, and the other is the ${}^3D_1$ dominant state but contains a large amount of $S$ and $P$ wave components. The third category includes the unnatural parity states, such as $1^+$, $2^-$, $3^+$, etc. For the $1^+$ spectrum, the states are grouped into pairs with different radial quantum numbers. Each pair contains two ${}^1P_1-{}^3P_1$ mixing states, and the corresponding mixing angles are calculated by using the relativistic wave functions.