论文标题
广义Langevin方程中的位置依赖性内存内核:理论和数值估计
Position-dependent memory kernel in generalized Langevin equations: theory and numerical estimation
论文作者
论文摘要
具有非线性力和位置依赖性的线性摩擦记忆内核的广义Langevin方程,例如用于描述分子动力学中粗粒变量的有效动力学的常规摩擦记忆内核,是在Mori-Zwanzig形式主义中严格衍生的。显示了将噪声与记忆内核有关的波动分流定理。该派生还产生了内核的伏特拉型方程,该方程可用于来自全原子模拟的模型的数值参数化。
Generalized Langevin equations with non-linear forces and position-dependent linear friction memory kernels, such as commonly used to describe the effective dynamics of coarse-grained variables in molecular dynamics, are rigorously derived within the Mori-Zwanzig formalism. A fluctuation-dissipation theorem relating the properties of the noise to the memory kernel is shown. The derivation also yields Volterra-type equations for the kernel, which can be used for a numerical parametrization of the model from all-atom simulations.