论文标题

一个新颖的增量学习驱动实例分割框架,以识别违禁品的高度混乱的实例

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

论文作者

Hassan, Taimur, Akcay, Samet, Bennamoun, Mohammed, Khan, Salman, Werghi, Naoufel

论文摘要

从行李X射线扫描中筛选混乱和遮挡的违禁品,即使对于专家安全人员来说,筛查也是一项繁琐的任务。本文提出了一种新颖的策略,该策略扩展了传统的编码器架构以执行实例感知的分割,并提取违禁项目的合并实例,而无需使用任何其他子网络或对象检测器。编码器 - 模型网络首先执行传统的语义分割并检索混乱的行李物品。然后,该模型在训练过程中会逐步发展,以使用训练批量大大减少的培训批准单个实例。为了避免灾难性的遗忘,一种新颖的目标函数通过保留先前获得的知识来最大程度地减少每次迭代的网络损失,同时学习新的类表征并通过贝叶斯推论解决其复杂的结构相互依存。对我们在两个公开可用的X射线数据集的框架进行详尽的评估表明,它的表现优于最先进的方法,尤其是在充满挑战的混乱场景中,同时在检测准确性和效率之间取得了最佳的权衡。

Screening cluttered and occluded contraband items from baggage X-ray scans is a cumbersome task even for the expert security staff. This paper presents a novel strategy that extends a conventional encoder-decoder architecture to perform instance-aware segmentation and extract merged instances of contraband items without using any additional sub-network or an object detector. The encoder-decoder network first performs conventional semantic segmentation and retrieves cluttered baggage items. The model then incrementally evolves during training to recognize individual instances using significantly reduced training batches. To avoid catastrophic forgetting, a novel objective function minimizes the network loss in each iteration by retaining the previously acquired knowledge while learning new class representations and resolving their complex structural inter-dependencies through Bayesian inference. A thorough evaluation of our framework on two publicly available X-ray datasets shows that it outperforms state-of-the-art methods, especially within the challenging cluttered scenarios, while achieving an optimal trade-off between detection accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源