论文标题
派生的交织距离的完整性和非平滑物体的捆绑量化
Completeness of derived interleaving distances and sheaf quantization of non-smooth objects
论文作者
论文摘要
我们开发了横扫理论方法来处理符号几何形状中的非平滑对象。我们展示了相对于交织距离的衍生类带类别的完整性,并构建了对哈密顿同件同态的捆定量化。我们还在微局部束带理论中发展了Lusternik- schnirelmann理论。借助这些新的脱纸质理论方法,我们证明了在哈密顿同构同态下,是紧凑的精确拉格朗日式Submanifold的图像的Arnold型定理。
We develop sheaf-theoretic methods to deal with non-smooth objects in symplectic geometry. We show the completeness of a derived category of sheaves with respect to the interleaving distance and construct a sheaf quantization of a Hamiltonian homeomorphism. We also develop Lusternik--Schnirelmann theory in the microlocal theory of sheaves. With these new sheaf-theoretic methods, we prove an Arnold-type theorem for the image of a compact exact Lagrangian submanifold under a Hamiltonian homeomorphism.