论文标题

月桂素现象代数的某些基本特性

Some elementary properties of Laurent phenomenon algebras

论文作者

Du, Qiuning, Li, Fang

论文摘要

令$σ$为laurent现象(lp)等级$ n $,$ \ mathcal {a}(σ)$,$ \ mathcal {u}(σ)$和$ \ mathcal {l}(σ)$分别是其相应的lurent Algebra上限和下限。我们证明,$ \ Mathcal {a}(σ)$的每种种子都是由其群集唯一定义的,并且具有$ n-1 $ common common common common common commun cluster变量的$ \ Mathcal {a}(σ)$的任何两个种子都通过一个步骤相互连接。本文中的方法还适用于(完全符号对称)群集代数。此外,我们表明,当每个交换多项式与其Exchange Laurent laurent多项式($σ$)重合时,$ \ Mathcal {u}(σ)$在种子突变下是不变的。此外,我们获得了$ \ mathcal {l}(σ)$的标准单基础。我们还证明,在某些条件下,$ \ MATHCAL {U}(σ)$与$ \ Mathcal {l}(σ)$重合。

Let $Σ$ be Laurent phenomenon (LP) seed of rank $n$, $\mathcal{A}(Σ)$, $\mathcal{U}(Σ)$ and $\mathcal{L}(Σ)$ be its corresponding Laurent phenomenon algebra, upper bound and lower bound respectively. We prove that each seed of $\mathcal{A}(Σ)$ is uniquely defined by its cluster, and any two seeds of $\mathcal{A}(Σ)$ with $n-1$ common cluster variables are connected with each other by one step of mutation. The method in this paper also works for (totally sign-skew-symmetric) cluster algebras. Moreover, we show that $\mathcal{U}(Σ)$ is invariant under seed mutations when each exchange polynomials coincides with its exchange Laurent polynomials of $Σ$. Besides, we obtain the standard monomial bases of $\mathcal{L}(Σ)$. We also prove that $\mathcal{U}(Σ)$ coincides with $\mathcal{L}(Σ)$ under certain conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源