论文标题

私人发布事件日志的私人释放用于过程挖掘

Differentially Private Release of Event Logs for Process Mining

论文作者

Elkoumy, Gamal, Pankova, Alisa, Dumas, Marlon

论文摘要

流程挖掘技术的适用性取决于捕获业务流程执行的事件日志的可用性。在某些用例中,尤其是涉及面向客户的流程的用例,这些事件日志可能包含私人信息。数据保护法规限制了用于分析目的的此类事件日志的使用。规避这些限制的一种方法是匿名将事件日志匿名化,以至于无法使用匿名日志挑出个人。本文解决了匿名日志的匿名问题,以确保在释放匿名日志后,攻击者可能会单张出原始日志中任何个体的概率不会增加超过阈值。本文提出了一种差异化释放机制,该机制将在日志中进行采样,并在实现上述隐私保证所需的范围内为时间戳增加噪声。本文报告了对拟议方法与最先进方法的经验比较,该方法在数据实用性损失和计算效率方面使用了14个现实生活事件日志。

The applicability of process mining techniques hinges on the availability of event logs capturing the execution of a business process. In some use cases, particularly those involving customer-facing processes, these event logs may contain private information. Data protection regulations restrict the use of such event logs for analysis purposes. One way of circumventing these restrictions is to anonymize the event log to the extent that no individual can be singled out using the anonymized log. This article addresses the problem of anonymizing an event log in order to guarantee that, upon release of the anonymized log, the probability that an attacker may single out any individual represented in the original log does not increase by more than a threshold. The article proposes a differentially private release mechanism, which samples the cases in the log and adds noise to the timestamps to the extent required to achieve the above privacy guarantee. The article reports on an empirical comparison of the proposed approach against the state-of-the-art approaches using 14 real-life event logs in terms of data utility loss and computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源