论文标题

重新审视脆性断裂的相位场外方法:凹痕和缺口问题

The revisited phase-field approach to brittle fracture: Application to indentation and notch problems

论文作者

Kumar, Aditya, Ravi-Chandar, K., Lopez-Pamies, Oscar

论文摘要

在最近的贡献中,库马尔,布尔丁,弗兰克福特和洛佩兹 - 帕(J.Mech。Phys。Solids。固体142:104027,2020)引入了在任意弹性易碎材料中骨折的全面宏观相位场理论,用于在任意弹性易位材料中骨折的核能和传播。该理论可以看作是Francfort和Marigo脆性断裂变化理论的相位近似的自然概括(J.Mech。Phys。46:1319--1342,1998),以说明整个材料强度。这是通过添加外部驱动力来完成的,该驱动力在材料中固有的显微镜缺陷存在的宏观表现 - 在管理相位场演变的方程式中。本文的主要目的是通过与三种代表性类型的实验性常见但具有技术挑战性的问题的直接测量面对其预测来继续为该理论提供验证结果:$ i $)玻璃板的凹痕,具有平坦的圆柱形缩进器以及$ ii $ ii $ ii $ iii $ iii $ $ iii $ $ iii $ $ iii $ $ iii $)v-notched pmmam pmmam pmma pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam pmmam smmam。

In a recent contribution, Kumar, Bourdin, Francfort, and Lopez-Pamies (J. Mech. Phys. Solids 142:104027, 2020) have introduced a comprehensive macroscopic phase-field theory for the nucleation and propagation of fracture in linear elastic brittle materials under arbitrary quasistatic loading conditions. The theory can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (J. Mech. Phys. Solids 46:1319--1342, 1998) to account for the material strength at large. This is accomplished by the addition of an external driving force -- which physically represents the macroscopic manifestation of the presence of inherent microscopic defects in the material -- in the equation governing the evolution of the phase field. The main purpose of this paper is to continue providing validation results for the theory by confronting its predictions with direct measurements from three representative types of experimentally common yet technically challenging problems: $i$) the indentation of glass plates with flat-ended cylindrical indenters and the three-point bending of $ii$) U-notched and $iii$) V-notched PMMA beams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源