论文标题
从$ \ Mathcal {pt} $ - 对称扰动的散射$ ϕ^6 $扭结
Scattering of the asymmetric $ϕ^6$ kinks from a $\mathcal{PT}$-symmetric perturbation: Creation of multiple pairs of kink-antikink from phonons
论文作者
论文摘要
不对称$ ϕ^6 $ kinks与空间本地化的$ \ mathcal {pt} $ - 对称扰动的相互作用进行了数值研究。已经表明,当扭结(Antikink)从增益侧击中缺陷时,扭结的最终速度会降低(增加),而对于从相反方向出现的扭结和反kink的最终速度保持不变。还发现,当扭结与增益侧的缺陷相互作用时,多对多对扭结曲线是由最终状态中的小振幅波(声子)形成的,具体取决于扰动的初始扭结和参数的初始速度。
Interaction of asymmetric $ϕ^6$ kinks with a spatially localized $\mathcal{PT}$-symmetric perturbation is investigated numerically. It has been shown that when the kink (antikink) hits the defect from the gain side, a final velocity of the kink decreases (increases), while for the kink and antikink coming from the opposite direction their final velocities remain unchanged. It is also found that when the kink interacts with the defect from the gain side multiple pair of the kink-antikink are formed from small amplitude waves (phonons) in the final states depending on the initial velocity of the initial kink and parameter of the perturbation.