论文标题
托管随机资源的多个电源分销网格的协调日派遣:基于ADMM的框架
Coordinated Day-ahead Dispatch of Multiple Power Distribution Grids hosting Stochastic Resources: An ADMM-based Framework
论文作者
论文摘要
这项工作提出了一个优化框架,以汇总互连电源分配系统中的功率和能量灵活性。聚合框架用于计算以不同电压级别运行的多个和相互连接的分配网格的日前调度计划。具体而言,所提出的框架优化了上游介质电压(MV)网格的调度计划,该网格计算了下游低压(LV)网格提供的灵活性以及对随机资源不确定性的了解。该框架考虑了网格,即使用线性化的网格模型以及可控资源的约束对节点,线路和变压器容量的操作限制。考虑到随机发电和需求的不确定性以及上游网格施加的电压,调度问题被称为随机性优化方案。该问题是通过分布式优化方法解决的,该方法依靠乘数的交替方向方法(ADMM)将主要问题分解为聚合问题问题(在MV-Grid级别解决)和几个局部问题(在MV连接的可控制的 - 可控制的 - 可控制的资源和LV网格水平上解决)。分布式优化的使用实现了分散的调度计算,其中集中式聚合器对参与资源和下游网格的参数/模型不可知。该框架已验证,用于托管异质随机和可控资源的互连CIGRE中型和低压网络。
This work presents an optimization framework to aggregate the power and energy flexibilities in an interconnected power distribution systems. The aggregation framework is used to compute the day-ahead dispatch plans of multiple and interconnected distribution grids operating at different voltage levels. Specifically, the proposed framework optimizes the dispatch plan of an upstream medium voltage (MV) grid accounting for the flexibility offered by downstream low voltage (LV) grids and the knowledge of the uncertainties of the stochastic resources. The framework considers grid, i.e., operational limits on the nodal voltages, lines, and transformer capacity using a linearized grid model, and controllable resources' constraints. The dispatching problem is formulated as a stochastic-optimization scheme considering uncertainty on stochastic power generation and demands and the voltage imposed by the upstream grid. The problem is solved by a distributed optimization method relying on the Alternating Direction Method of Multipliers (ADMM) that splits the main problem into an aggregator problem (solved at the MV-grid level) and several local problems (solved at the MV-connected-controllable-resources and LV-grid levels). The use of distributed optimization enables a decentralized dispatch computation where the centralized aggregator is agnostic about the parameters/models of the participating resources and downstream grids. The framework is validated for interconnected CIGRE medium- and low-voltage networks hosting heterogeneous stochastic and controllable resources.