论文标题
三角形晶格中受拓扑保护的边缘状态
Topologically Protected Edge States in Triangular Lattices
论文作者
论文摘要
我们描述了存在于三角形晶格的界面上存在的拓扑稳健边缘状态的可能性,这些状态受到对边界条件敏感的旋转对称性支持的。从浆果曲率的角度来看,这种状态是微不足道的,而是源于晶体对称性和有限边界效应之间的相互作用。无论如何,我们表明,只要维持量规依赖性的对称性,这种状态处于不同的拓扑阶段。这样的模型描述了关于三角形晶格的许多近期骨体实验演示,到目前为止,物理学已经避免了解释。
We describe the possibility for topologically robust edge states existing on interfaces of triangular lattices which are supported by rotational symmetries that are sensitive to boundary conditions. Such states are trivial from the perspective of Berry curvature, but result instead from an interplay between crystalline symmetries and finite boundary effects. Regardless, we show such states are in a distinct topological phase, provided the gauge-dependent symmetries are maintained. Such a model describes a number of recent bosonic experimental demonstrations on triangular lattices, the physics for which has thus far eluded explanation.