论文标题
花冠:有效的多模式融合框架,具有青光眼评分的监督对比学习
COROLLA: An Efficient Multi-Modality Fusion Framework with Supervised Contrastive Learning for Glaucoma Grading
论文作者
论文摘要
青光眼是可能引起失明的眼科疾病之一,对此,早期发现和治疗非常重要。眼底图像和光学相干断层扫描(OCT)图像在诊断青光眼方面都是广泛使用的方式。但是,现有的青光眼分级方法主要利用单一模态,而忽略了眼底和OCT之间的互补信息。在本文中,我们提出了一个有效的多模式监督对比学习框架,名为Corolla,用于青光眼分级。通过层分割以及厚度计算和投影,从原始的OCT卷中提取视网膜厚度图并用作替代方式,从而导致更有效的计算,而记忆使用较少。鉴于医学图像样本之间的结构和分布相似,我们采用了有监督的对比学习,以更好地收敛来增加模型的歧视能力。此外,进行了配对的底面图像和厚度图的特征级融合以提高诊断精度。在伽马数据集上,与最先进的方法相比,我们的花冠框架达到了压倒性的青光眼分级性能。
Glaucoma is one of the ophthalmic diseases that may cause blindness, for which early detection and treatment are very important. Fundus images and optical coherence tomography (OCT) images are both widely-used modalities in diagnosing glaucoma. However, existing glaucoma grading approaches mainly utilize a single modality, ignoring the complementary information between fundus and OCT. In this paper, we propose an efficient multi-modality supervised contrastive learning framework, named COROLLA, for glaucoma grading. Through layer segmentation as well as thickness calculation and projection, retinal thickness maps are extracted from the original OCT volumes and used as a replacing modality, resulting in more efficient calculations with less memory usage. Given the high structure and distribution similarities across medical image samples, we employ supervised contrastive learning to increase our models' discriminative power with better convergence. Moreover, feature-level fusion of paired fundus image and thickness map is conducted for enhanced diagnosis accuracy. On the GAMMA dataset, our COROLLA framework achieves overwhelming glaucoma grading performance compared to state-of-the-art methods.