论文标题
没有完全知识的因果推断的祖先仪器方法
Ancestral Instrument Method for Causal Inference without Complete Knowledge
论文作者
论文摘要
未观察到的混杂是观察数据的因果效应估计的主要障碍。当存在潜在的混杂因素时,仪器变量(IVS)被广泛用于因果效应估计。使用标准IV方法,当给定IV是有效的时,可以获得无偏估计,但是标准IV上的有效性要求是严格且无法测试的。已经提出有条件的IV通过在一组观察到的变量(称为条件IV的条件集)上进行调节来放松标准IV的需求。但是,找到针对条件IV的调节设置的标准需要定向的无环图(DAG),代表观察到的变量和未观察到的变量的因果关系。这使得直接从数据中发现调节设置变得具有挑战性。在本文中,通过利用最大祖先图(MAG)进行潜在变量的因果推断,我们研究了使用MAGS使用MAGS的祖先IVS的图形性能,一种有条件的IVS,并发展理论,以支持在预定性假设的数据中,用于在数据中给定祖先IV的调理设置的数据驱动器发现。基于该理论,我们使用给定的祖先静脉注射和观察数据开发了一种无偏因因果效应估计的算法。与现有IV方法相比,关于合成和现实世界数据集的广泛实验证明了该算法的性能。
Unobserved confounding is the main obstacle to causal effect estimation from observational data. Instrumental variables (IVs) are widely used for causal effect estimation when there exist latent confounders. With the standard IV method, when a given IV is valid, unbiased estimation can be obtained, but the validity requirement on a standard IV is strict and untestable. Conditional IVs have been proposed to relax the requirement of standard IVs by conditioning on a set of observed variables (known as a conditioning set for a conditional IV). However, the criterion for finding a conditioning set for a conditional IV needs a directed acyclic graph (DAG) representing the causal relationships of both observed and unobserved variables. This makes it challenging to discover a conditioning set directly from data. In this paper, by leveraging maximal ancestral graphs (MAGs) for causal inference with latent variables, we study the graphical properties of ancestral IVs, a type of conditional IVs using MAGs, and develop the theory to support data-driven discovery of the conditioning set for a given ancestral IV in data under the pretreatment variable assumption. Based on the theory, we develop an algorithm for unbiased causal effect estimation with a given ancestral IV and observational data. Extensive experiments on synthetic and real-world datasets demonstrate the performance of the algorithm in comparison with existing IV methods.