论文标题

三个量表展开均化方法适用于心脏双域模型

Three Scale Unfolding Homogenization Method Applied to Cardiac Bidomain Model

论文作者

Bader, Fakhrielddine, Bendahmane, Mostafa, Saad, Mazen, Talhouk, Raafat

论文摘要

在本文中,我们正在处理严格的均质化结果,以两个不同的级别的双层域模型的心脏电体生理学模型。与介观结构相关的第一级,使心脏组织由界面分离的细胞外和细胞内结构域组成(肌膜)。第二种与微观结构相关的方式,使细胞内培养基只能被视为单位细胞的周期布局(线粒体)。在细胞内介质和细胞外培养基之间的界面上,通量由离子和施加电流的非线性函数给出。基于展开算子的严格均质化过程被应用于从我们的中微观biDomain模型中得出宏观(均质化)模型。我们在细胞内问题中应用三尺度展开方法,以两个级别获得其均质方程。细胞内结构的第一个级别升级产生介质方程。均质化的第二步导致获得细胞内均质方程。为了证明非线性术语的收敛性,尤其是在微观界面上定义的术语,我们使用边界展开方法和Kolmogorov-Riesz紧凑型的结果。接下来,我们使用标准展开方法来匀浆细胞外问题。最后,我们以极限为单个结构域(细胞内和细胞外培养基的叠加)上的反应扩散系统,该系统取决于三个尺度。这种模型被广泛地用于描述心脏组织的宏观行为,该模型被认为是细胞质(细胞内)和生物学细胞内其他细胞外的重要使者。内容2020数学主题分类。 65N55和35A01和35B27和35K57和65M。

In this paper, we are dealing with a rigorous homogenization result at two different levels for the bidomain model of cardiac electro-physiology. The first level associated with the mesoscopic structure such that the cardiac tissue consists of extracellular and intracellular domains separated by an interface (the sarcolemma). The second one related to the microscopic structure in such a way that the intracellular medium can only be viewed as a periodical layout of unit cells (mitochondria). At the interface between intra-and extracellular media, the fluxes are given by nonlinear functions of ionic and applied currents. A rigorous homogenization process based on unfolding operators is applied to derive the macroscopic (homogenized) model from our meso-microscopic bidomain model. We apply a three-scale unfolding method in the intracellular problem to obtain its homogenized equation at two levels. The first level upscaling of the intracellular structure yields the mesoscopic equation. The second step of the homogenization leads to obtain the intracellular homogenized equation. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding method and a Kolmogorov-Riesz compactness's result. Next, we use the standard unfolding method to homogenize the extracellular problem. Finally, we obtain, at the limit, a reaction-diffusion system on a single domain (the superposition of the intracellular and extracellular media) which contains the homogenized equations depending on three scales. Such a model is widely used for describing the macroscopic behavior of the cardiac tissue, which is recognized to be an important messengers between the cytoplasm (intracellular) and the other extracellular inside the biological cells. Contents 2020 Mathematics Subject Classification. 65N55 and 35A01 and 35B27 and 35K57 and 65M..

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源