论文标题
标量场理论的梯度流的固定点结构精确重新归一化组
Fixed Point Structure of Gradient Flow Exact Renormalization Group for Scalar Field Theories
论文作者
论文摘要
梯度流动精确的重新归一化组(GFERG)是通过梯度流程方程来定义威尔逊动作的框架。我们研究了标量场理论的一般梯度流程方程相关的GFERG方程的固定点结构,并表明它与常规的Wilson-Polchinski(WP)方程相同。此外,我们讨论GFERG方程在WP方程的固定点附近具有相似的RG流量结构。我们用$ 4-ε$ dimensions和Wilson-Fisher固定点的$ O(N)$非线性Sigma模型说明了这些结果。
Gradient Flow Exact Renormalization Group (GFERG) is a framework to define the Wilson action via a gradient flow equation. We study the fixed point structure of the GFERG equation associated with a general gradient flow equation for scalar field theories and show that it is the same as that of the conventional Wilson-Polchinski (WP) equation in general. Furthermore, we discuss that the GFERG equation has a similar RG flow structure around a fixed point to the WP equation. We illustrate these results with the $O(N)$ non-linear sigma model in $4-ε$ dimensions and the Wilson-Fisher fixed point.