论文标题

按图表和表面卷积评估膝盖软骨缺陷评估

Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution

论文作者

Zhuang, Zixu, Si, Liping, Wang, Sheng, Xuan, Kai, Ouyang, Xi, Zhan, Yiqiang, Xue, Zhong, Zhang, Lichi, Shen, Dinggang, Yao, Weiwu, Wang, Qian

论文摘要

膝盖骨关节炎(OA)是最常见的骨关节炎,也是残疾的主要原因。软骨缺陷被认为是膝关节OA的主要表现,通过磁共振成像(MRI)可见。因此,早期发现和评估膝盖软骨缺陷对于保护患者免受膝关节OA的影响很重要。这样,通过将卷积神经网络(CNN)应用于膝盖MRI,对膝盖软骨缺陷评估进行了许多尝试。但是,软骨的生理特征可能会阻碍这种努力:软骨是一个薄的弯曲层,这意味着只有一小部分膝盖MRI中的体素才能有助于软骨缺陷评估;异质扫描方案进一步挑战了CNN在临床实践中的可行性;基于CNN的膝盖软骨评估结果缺乏可解释性。为了应对这些挑战,我们将膝盖MRI的软骨结构和外观建模为图表表示,该图表能够处理高度多样化的临床数据。然后,在软骨图表示的指导下,我们设计了一个具有自我注意力机制的非欧国人深度学习网络,以在局部和全局中提取软骨特征,并以可视化的结果得出最终评估。我们的综合实验表明,该提出的方法在膝盖软骨缺陷评估中产生了卓越的性能,以及其方便的3D可视化可解释性。

Knee osteoarthritis (OA) is the most common osteoarthritis and a leading cause of disability. Cartilage defects are regarded as major manifestations of knee OA, which are visible by magnetic resonance imaging (MRI). Thus early detection and assessment for knee cartilage defects are important for protecting patients from knee OA. In this way, many attempts have been made on knee cartilage defect assessment by applying convolutional neural networks (CNNs) to knee MRI. However, the physiologic characteristics of the cartilage may hinder such efforts: the cartilage is a thin curved layer, implying that only a small portion of voxels in knee MRI can contribute to the cartilage defect assessment; heterogeneous scanning protocols further challenge the feasibility of the CNNs in clinical practice; the CNN-based knee cartilage evaluation results lack interpretability. To address these challenges, we model the cartilages structure and appearance from knee MRI into a graph representation, which is capable of handling highly diverse clinical data. Then, guided by the cartilage graph representation, we design a non-Euclidean deep learning network with the self-attention mechanism, to extract cartilage features in the local and global, and to derive the final assessment with a visualized result. Our comprehensive experiments show that the proposed method yields superior performance in knee cartilage defect assessment, plus its convenient 3D visualization for interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源