论文标题

比较对称双曲线热力学兼容框架与二元混合物的哈密顿力学

Comparison of the Symmetric Hyperbolic Thermodynamically Compatible framework with Hamiltonian mechanics of binary mixtures

论文作者

Sykora, Martin, Pavelka, Michal, Peshkov, Ilya, Minakowski, Piotr, Klika, Vaclav, Romenski, Evgeniy

论文摘要

如何正确描述每个组成部分具有自己动力的二元混合物的连续热力学?对称双曲线热力学一致(SHTC)框架和哈密顿力学的形式是通用方程式的非平衡性可逆 - 可逆耦合(通用)提供两个答案,提供了两个答案,这些答案相似,但不完全相同,但在本文中进行了比较。它们在分析和数值上进行了几个描述级别的比较,细节的数量有所不同。源自liouville方程的通用方程包含表达相对速度自变义的术语,从而导致还原后导致涡度依赖性扩散矩阵。另一方面,SHTC方程不包含此类术语。我们还展示了如何用两个矩形制定混合物理论,并且只有一个与liouville方程兼容的温度,并具有包括雅各比身份在内的哈密顿结构。

How to properly describe continuum thermodynamics of binary mixtures where each constituent has its own momentum? The Symmetric Hyperbolic Thermodynamically Consistent (SHTC) framework and Hamiltonian mechanics in the form of the General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) provide two answers, which are similar but not identical, and are compared in this article. They are compared both analytically and numerically on several levels of description, varying in the amount of detail. The GENERIC equations, stemming from the Liouville equation, contain terms expressing self-advection of the relative velocity by itself, which lead to a vorticity-dependent diffusion matrix after a reduction. The SHTC equations, on the other hand, do not contain such terms. We also show how to formulate a theory of mixtures with two momenta and only one temperature that is compatible with the Liouville equation and possesses the Hamiltonian structure, including Jacobi identity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源