论文标题

多视图子空间群集的细粒图学习

Fine-grained Graph Learning for Multi-view Subspace Clustering

论文作者

Wang, Yidi, Pei, Xiaobing, Zhan, Haoxi

论文摘要

多视图子空间聚类(MSC)是一种流行的无监督方法,它通过集成异质信息以揭示隐藏在视图中的内在聚类结构。通常,MSC方法使用图(或亲和力矩阵)融合来学习共同的结构,并进一步将基于图的方法应用于聚类。尽管进步,大多数方法并未建立图形学习和聚类之间的联系。同时,常规的图形融合策略分配了粗粒度的重量来结合多画,而忽略了局部结构的重要性。在本文中,我们为多视图子空间聚类(FGL-MSC)提出了一个细粒度的图形学习框架,以解决这些问题。为了充分利用多视图信息,我们通过引入图形正则化和局部结构融合模式来设计特定的图形学习方法。主要的挑战是如何在生成适合聚类任务的学习图时优化细粒度的融合权重,从而使聚类表示有意义且具有竞争力。因此,提出了一种迭代算法来解决上述关节优化问题,该问题可以同时获得学习的图,聚类表示和融合权重。在八个现实世界数据集上进行的广泛实验表明,所提出的框架的性能与最先进的方法相当。该方法的源代码可在https://github.com/siriuslay/fgl-msc上获得。

Multi-view subspace clustering (MSC) is a popular unsupervised method by integrating heterogeneous information to reveal the intrinsic clustering structure hidden across views. Usually, MSC methods use graphs (or affinity matrices) fusion to learn a common structure, and further apply graph-based approaches to clustering. Despite progress, most of the methods do not establish the connection between graph learning and clustering. Meanwhile, conventional graph fusion strategies assign coarse-grained weights to combine multi-graph, ignoring the importance of local structure. In this paper, we propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC) to address these issues. To utilize the multi-view information sufficiently, we design a specific graph learning method by introducing graph regularization and a local structure fusion pattern. The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task, thus making the clustering representation meaningful and competitive. Accordingly, an iterative algorithm is proposed to solve the above joint optimization problem, which obtains the learned graph, the clustering representation, and the fusion weights simultaneously. Extensive experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods. The source code of the proposed method is available at https://github.com/siriuslay/FGL-MSC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源