论文标题

交叉的伯恩赛德戒指和共同学麦基$ 2 $ - 动物

Crossed Burnside rings and cohomological Mackey $2$-motives

论文作者

Oda, Fumihito, Takegahara, Yugen, Yoshida, Tomoyuki

论文摘要

Balmer和Dell'Ambrogio从$ K $ -Linear Mackey的bicateGory中引入了伪操作$ P $,$ 2 $ - $ 2 $ - $ K $ linear cohomological cohomological Mackey $ 2 $ 2 $ -Motives to Commuteative Ring $ k $。他们表明,$ p $地图通过使用$ g $ k $ to $ k $ i $ k $的圆环的圆环$ g $ to $ k $ to $ k $ to $ k $ to $ kg $的中心$ zkg $ zkg $ zkg $ zkg $ zkg $ zkg $ zkg $ zkg $ zkg $ zkg $ zkg $ kg $(bd221,theyorem 5.3)我们研究了共同体Mackey的动机分解的行为,$ 2 $ - 动机作为图像,由Mackey的动机分解为$ 2 $ 2 $ - 动机。

Balmer and Dell'Ambrogio introduced the pseudo-functor $P$ from the bicategory of $k$-linear Mackey $2$-motives to the bicategory of $k$-linear cohomological Mackey $2$-motives over a commutative ring $k$. They showed that $P$ maps the general Mackey $2$-motives to the cohomological Mackey $2$-motives by using the ring homomorphism from the crossed Burnside ring of a finite group $G$ over $k$ to the center $ ZkG$ of group algebra $kG$ ([BD21, Theorem 5.3]). We study the behavior of motivic decomposition of cohomological Mackey $2$-motives as images by $P$ of motivic decomposition of Mackey $2$-motives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源