论文标题
在Horikawa表面的自动形态上
On the group of automorphisms of Horikawa surfaces
论文作者
论文摘要
通用类型$ x $的最小代数表面,这样$ k^2_x =2χ(\ Mathcal {o} _x)-6 $称为Horikawa表面。在本说明中,研究了Horikawa表面的一组自动形态。 The main result states that given an admissible pair $(K^2, χ)$ such that $K^2=2χ-6$, every irreducible component of Gieseker's moduli space $\mathfrak{M}_{K^2,χ}$ contains an open subset consisting of surfaces with group of automorphisms isomorphic to $\mathbb{Z}_2$.
Minimal algebraic surfaces of general type $X$ such that $K^2_X=2χ(\mathcal{O}_X)-6$ are called Horikawa surfaces. In this note the group of automorphisms of Horikawa surfaces is studied. The main result states that given an admissible pair $(K^2, χ)$ such that $K^2=2χ-6$, every irreducible component of Gieseker's moduli space $\mathfrak{M}_{K^2,χ}$ contains an open subset consisting of surfaces with group of automorphisms isomorphic to $\mathbb{Z}_2$.