论文标题

功能异常检测:基准研究

Functional Anomaly Detection: a Benchmark Study

论文作者

Staerman, Guillaume, Adjakossa, Eric, Mozharovskyi, Pavlo, Hofer, Vera, Gupta, Jayant Sen, Clémençon, Stephan

论文摘要

该行业许多领域的自动化增加明确要求设计有效的机器学习解决方案以检测异常事件。随着传感器的普遍部署几乎连续监测复杂基础设施的健康,现在可以依靠以非常高的频率采样的测量结果,从而提供了对监视下现象的非常丰富的表示。为了充分利用这样收集的信息,观察结果不再被视为多元数据,并且需要一种功能分析方法。本文的目的是调查在实际数据集上功能设置中最新技术的最新技术性能。在概述了最先进的研究和视觉描述性研究之后,比较了各种异常检测方法。尽管文献中记录了功能设置中异常(例如形状,位置)的分类法(例如形状,位置),但为已确定的异常分配了特定类型似乎是一项具有挑战性的任务。因此,鉴于这些突出显示的类型在模拟研究中,现有方法的优势和劣势是基准的。接下来在两个数据集上评估异常检测方法,这与飞行中的直升机和建筑材料的光谱法有关。基准分析由从业人员的建议指南结束。

The increasing automation in many areas of the Industry expressly demands to design efficient machine-learning solutions for the detection of abnormal events. With the ubiquitous deployment of sensors monitoring nearly continuously the health of complex infrastructures, anomaly detection can now rely on measurements sampled at a very high frequency, providing a very rich representation of the phenomenon under surveillance. In order to exploit fully the information thus collected, the observations cannot be treated as multivariate data anymore and a functional analysis approach is required. It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets. After an overview of the state-of-the-art and a visual-descriptive study, a variety of anomaly detection methods are compared. While taxonomies of abnormalities (e.g. shape, location) in the functional setup are documented in the literature, assigning a specific type to the identified anomalies appears to be a challenging task. Thus, strengths and weaknesses of the existing approaches are benchmarked in view of these highlighted types in a simulation study. Anomaly detection methods are next evaluated on two datasets, related to the monitoring of helicopters in flight and to the spectrometry of construction materials namely. The benchmark analysis is concluded by recommendation guidance for practitioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源