论文标题

微波屏蔽的极性分子蒸发到量子退化

Evaporation of microwave-shielded polar molecules to quantum degeneracy

论文作者

Schindewolf, Andreas, Bause, Roman, Chen, Xing-Yan, Duda, Marcel, Karman, Tijs, Bloch, Immanuel, Luo, Xin-Yu

论文摘要

Ultracold Polar分子提供了强大的电偶极力矩和丰富的内部结构,这使它们成为探索异国情调量子物质,实施新型量子信息方案或测试自然基本符号的理想组成部分。意识到它们的全部电势需要冷却相互作用的分子气体深入到量子变性方案中。但是,即使在短范围内,即使对于非反应性分子,也使它们的碰撞本质上不稳定的分子的复杂性迄今也阻止了在三个维度上的冷却到量子退化。在这里,我们证明了使用微波屏蔽的三维气体的费米子钠分子分子的蒸发冷却远低于费米温度。通过通过将旋转状态与蓝色消失的圆极化微波炉耦合的排斥屏障,可以保护分子免受短距离。微波敷料在分子之间诱导强大的可调偶性相互作用,从而导致高弹性碰撞速率至少超过非弹性碰撞速率。至少超过460倍。这种较大的弹性与弹性碰撞率使我们能够将分子气体冷却至21纳米蛋白,相当于菲尔米温度的0.36倍。这种前所未有的极性和致密的极性分子样本为探索新型多体现象的探索开辟了道路,例如长期拓扑的拓扑p波波超富富度液状态。

Ultracold polar molecules offer strong electric dipole moments and rich internal structure, which makes them ideal building blocks to explore exotic quantum matter, implement novel quantum information schemes, or test fundamental symmetries of nature. Realizing their full potential requires cooling interacting molecular gases deeply into the quantum degenerate regime. However, the complexity of molecules which makes their collisions intrinsically unstable at the short range, even for nonreactive molecules, has so far prevented the cooling to quantum degeneracy in three dimensions. Here, we demonstrate evaporative cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding. The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave. The microwave dressing induces strong tunable dipolar interactions between the molecules, leading to high elastic collision rates that can exceed the inelastic ones by at least a factor of 460. This large elastic-to-inelastic collision ratio allows us to cool the molecular gas down to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature. Such unprecedentedly cold and dense samples of polar molecules open the path to the exploration of novel many-body phenomena, such as the long-sought topological p-wave superfluid states of ultracold matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源