论文标题

对话信息检索的神经方法

Neural Approaches to Conversational Information Retrieval

论文作者

Gao, Jianfeng, Xiong, Chenyan, Bennett, Paul, Craswell, Nick

论文摘要

会话信息检索(CIR)系统是具有对话界面的信息检索(IR)系统,该系统允许用户与系统进行交互,以通过自然语言,口语或书面形式的多转交谈来搜索信息。深度学习的最新进展带来了自然语言处理(NLP)和对话性AI的巨大改进,导致了许多商业对话服务,这些服务允许自然使用和打字的互动,从而增加了对IR中以人为中心的相互作用的需求。结果,我们目睹了对在研究社区和行业发展现代CIR系统的复兴兴趣。本书调查了CIR的最新进展,重点介绍了最近几年发展的神经方法。这本书基于Sigir'2020的作者教程(Gao等,2020b),IR和NLP社区是主要目标受众。但是,具有其他背景的观众,例如机器学习和人类计算机的互动,也将发现它是CIR的介绍。我们希望这本书将为学生,研究人员和软件开发人员提供宝贵的资源。该手稿是一个工作草案。欢迎评论。

A conversational information retrieval (CIR) system is an information retrieval (IR) system with a conversational interface which allows users to interact with the system to seek information via multi-turn conversations of natural language, in spoken or written form. Recent progress in deep learning has brought tremendous improvements in natural language processing (NLP) and conversational AI, leading to a plethora of commercial conversational services that allow naturally spoken and typed interaction, increasing the need for more human-centric interactions in IR. As a result, we have witnessed a resurgent interest in developing modern CIR systems in both research communities and industry. This book surveys recent advances in CIR, focusing on neural approaches that have been developed in the last few years. This book is based on the authors' tutorial at SIGIR'2020 (Gao et al., 2020b), with IR and NLP communities as the primary target audience. However, audiences with other background, such as machine learning and human-computer interaction, will also find it an accessible introduction to CIR. We hope that this book will prove a valuable resource for students, researchers, and software developers. This manuscript is a working draft. Comments are welcome.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源