论文标题

联合性,扭曲中心和Hopf Monad的反双重

Pivotality, twisted centres and the anti-double of a Hopf monad

论文作者

Halbig, Sebastian, Zorman, Tony

论文摘要

有限维的HOPF代数在相互作用,一维抗更高的模块和Drinfeld和Anti-Drinfeld double之间的同构同构中接受了所谓的对之间的对应关系。我们将其扩展到一般的刚性单体类别,并在存在某些粉状的假设下提供了单一的解释。迄今为止,我们构建并研究了Hopf Monad的抗drinfeld双倍。作为应用程序,讨论了与德林菲尔德中心及其基本类别的关键性的联系。

Finite-dimensional Hopf algebras admit a correspondence between so-called pairs in involution, one-dimensional anti-Yetter--Drinfeld modules and algebra isomorphisms between the Drinfeld and anti-Drinfeld double. We extend it to general rigid monoidal categories and provide a monadic interpretation under the assumption that certain coends exist. Hereto we construct and study the anti-Drinfeld double of a Hopf monad. As an application the connection with the pivotality of Drinfeld centres and their underlying categories is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源