论文标题
$ sp(4,\ mathbb {r})$中的Maximal和Borel Anosov表示
Maximal and Borel Anosov representations in $Sp(4,\mathbb{R})$
论文作者
论文摘要
我们证明,表面基团的任何borel anosov表示为$ sp(4,\ mathbb {r})$,具有最大托莱多不变的,必须是hitchin。我们还证明,表面组的表示为$ sp(2n,\ mathbb {r})$,即$ \ {n-1,n \} $ - Anosov是最大的,并且仅当它满足HyperConvexity属性$ H_N $时。
We prove that any Borel Anosov representations of a surface group into $Sp(4,\mathbb{R})$ that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into $Sp(2n,\mathbb{R})$ that is $\{n-1,n\}$-Anosov is maximal if and only if it satisfies the hyperconvexity property $H_n$.