论文标题

电子温度梯度驱动的电磁不稳定性和等离子体湍流

Electromagnetic instabilities and plasma turbulence driven by electron-temperature gradient

论文作者

Adkins, T., Schekochihin, A. A., Ivanov, P. G., Roach, C. M.

论文摘要

电子温度梯度驱动的电磁(EM)不稳定性和湍流在类似于Tokamak的等离子体的局部平板模型中考虑。该模型描述了比通量冻结量表$ d_e $的尺度上的扰动,从而捕获了湍流的静电和EM机制。恢复了众所周知的静电不稳定性 - 平板和曲率介导的ETG,并在EM状态中发现了新的不稳定性,称为Thermo-Alfvénic不稳定性(TAI)。它存在于平板版本(STAI,破坏动力学的Alfvén波)和曲率介导的版本(CTAI)中,该版本是(电子尺度)动力学气球模式(KBM)的表弟。事实证明,在模型覆盖的最大尺度上,CTAI占主导地位(大于$ d_e $,但小于$ρ_i$),其物理机制呈现在沿扰动磁场线的总温度快速均衡(与KBM相比之下)。然后,构建了一个动荡的级联理论,具有两个能量注射量表:$ d_e $,驱动程序为板eTG和stai,以及一个较大的(平行系统大小)比例,其中驱动程序为ctai。如果温度梯度大于某个临界值,则后者将主导湍流传输,该临界值与电子β相反。与静电ETG湍流相比,所得的热通量与温度梯度更陡峭,从而产生更硬的运输。这可以看作是一个物理论点,支持电子传输控制的等离子体(例如,基座)中的近距离稳态。尽管该模型很简单,但由于试图建模具有高β和大电子温度梯度的Tokamak相关构型中EM湍流的效果的人,它应该引起人们的启示。

Electromagnetic (EM) instabilities and turbulence driven by the electron-temperature gradient are considered in a local slab model of a tokamak-like plasma. The model describes perturbations at scales both larger and smaller than the flux-freezing scale $d_e$, and so captures both electrostatic and EM regimes of turbulence. The well-known electrostatic instabilities -- slab and curvature-mediated ETG -- are recovered, and a new instability is found in the EM regime, called the Thermo-Alfvénic instability (TAI). It exists in both a slab version (sTAI, destabilising kinetic Alfvén waves) and a curvature-mediated version (cTAI), which is a cousin of the (electron-scale) kinetic ballooning mode (KBM). The cTAI turns out to be dominant at the largest scales covered by the model (greater than $d_e$ but smaller than $ρ_i$), its physical mechanism hinging on the fast equalisation of the total temperature along perturbed magnetic field lines (in contrast to KBM, which is pressure balanced). A turbulent cascade theory is then constructed, with two energy-injection scales: $d_e$, where the drivers are slab ETG and sTAI, and a larger (parallel system size dependent) scale, where the driver is cTAI. The latter dominates the turbulent transport if the temperature gradient is greater than a certain critical value, which scales inversely with the electron beta. The resulting heat flux scales more steeply with the temperature gradient than that due to electrostatic ETG turbulence, giving rise to stiffer transport. This can be viewed as a physical argument in favour of near-marginal steady-state in electron-transport-controlled plasmas (e.g., the pedestal). While the model is simplistic, the new physics that is revealed by it should be of interest to those attempting to model the effect of EM turbulence in tokamak-relevant configurations with high beta and large electron temperature gradients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源