论文标题

使用基于位置的动力学的动力学的参数识别和运动控制

Parameter Identification and Motion Control for Articulated Rigid Body Robots Using Differentiable Position-based Dynamics

论文作者

Liu, Fei, Li, Mingen, Lu, Jingpei, Su, Entong, Yip, Michael C.

论文摘要

机器人,对象和环境的仿真建模是所有基于模型的控制和学习的骨干。它在动态编程和模型预测的控制以及模仿,转移和强化学习的数据生成中广泛杠杆作用。除了保真度之外,模型在这些控制和学习环境中的关键特征是速度,稳定性和本地可怜性。但是,如今许多流行的机器人技术平台缺乏上述功能之一。最近,由于其速度和稳定性,基于位置的动力学(PBD)已成为一种非常流行的模拟工具,用于建模刚性和非刚性对象相互作用的复杂场景,并开始对机器人技术在基于模型的控制和学习中的潜在使用引起人们对机器人技术的重大兴趣。因此,在本文中,我们提出了基于耦合位置的动力学(PBD)模拟和最佳机器人设计,基于模型的运动控制和系统识别的数学公式。我们的框架分解了PBD的定义和针对各种基于联合的铰接刚体的衍生作品。我们提出了一种具有自动分化的后传播方法,该方法可以同时整合位置和角几何约束。我们的框架可以批判性地提供本地梯度信息并执行基于梯度的优化任务。我们还为我们的可区分框架提出了铰接的联合模型表示和仿真工作流程。我们证明了该框架在有效的最佳机器人设计中的能力,准确的轨迹扭矩估计以及支撑弹簧刚度估计,我们达到了较小的误差。我们还在真正的机器人中实施阻抗控制,以证明我们在人类的应用程序中的可区分框架的潜力。

Simulation modeling of robots, objects, and environments is the backbone for all model-based control and learning. It is leveraged broadly across dynamic programming and model-predictive control, as well as data generation for imitation, transfer, and reinforcement learning. In addition to fidelity, key features of models in these control and learning contexts are speed, stability, and native differentiability. However, many popular simulation platforms for robotics today lack at least one of the features above. More recently, position-based dynamics (PBD) has become a very popular simulation tool for modeling complex scenes of rigid and non-rigid object interactions, due to its speed and stability, and is starting to gain significant interest in robotics for its potential use in model-based control and learning. Thus, in this paper, we present a mathematical formulation for coupling position-based dynamics (PBD) simulation and optimal robot design, model-based motion control and system identification. Our framework breaks down PBD definitions and derivations for various types of joint-based articulated rigid bodies. We present a back-propagation method with automatic differentiation, which can integrate both positional and angular geometric constraints. Our framework can critically provide the native gradient information and perform gradient-based optimization tasks. We also propose articulated joint model representations and simulation workflow for our differentiable framework. We demonstrate the capability of the framework in efficient optimal robot design, accurate trajectory torque estimation and supporting spring stiffness estimation, where we achieve minor errors. We also implement impedance control in real robots to demonstrate the potential of our differentiable framework in human-in-the-loop applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源