论文标题
自由电子激光器中电子束的纵向特性的混合诊断
Mixed Diagnostics for Longitudinal Properties of Electron Bunches in a Free-Electron Laser
论文作者
论文摘要
电子束的纵向特性对于广泛的科学设施的性能至关重要。例如,在自由电子激光器中,现有的诊断仅在在线调整和优化过程中提供了非常有限的电子束纵向信息。我们利用人工智能的力量使用实验数据来构建神经网络模型,以便将破坏性的纵向空间(LPS)诊断实际上实际上在线诊断,并改善现有的当前轮廓在线诊断,该诊断使用相干过渡辐射(CTR)光谱仪。该模型还可以用作真实机器的数字双胞胎,可以在该机器上有效测试算法。我们在闪光设施中证明,具有多个解码器的编码器模型可以高度准确地预测百万像素LPS图像和相干的过渡辐射光谱,同时,在带有LPS形状和峰值范围的宽范围的电子束中的电子束中,同时可以通过扫描所有的主要控制旋钮来获得所有的LPS形状和峰值。此外,我们提出了一种通过组合预测和测量光谱来显着改善CTR光谱仪在线测量的方法。我们的工作展示了如何结合虚拟和实际诊断,以便为科学设施提供异质和可靠的混合诊断。
Longitudinal properties of electron bunches are critical for the performance of a wide range of scientific facilities. In a free-electron laser, for example, the existing diagnostics only provide very limited longitudinal information of the electron bunch during online tuning and optimization. We leverage the power of artificial intelligence to build a neural network model using experimental data, in order to bring the destructive longitudinal phase space (LPS) diagnostics online virtually and improve the existing current profile online diagnostics which uses a coherent transition radiation (CTR) spectrometer. The model can also serve as a digital twin of the real machine on which algorithms can be tested efficiently and effectively. We demonstrate at the FLASH facility that the encoder-decoder model with more than one decoder can make highly accurate predictions of megapixel LPS images and coherent transition radiation spectra concurrently for electron bunches in a bunch train with broad ranges of LPS shapes and peak currents, which are obtained by scanning all the major control knobs for LPS manipulation. Furthermore, we propose a way to significantly improve the CTR spectrometer online measurement by combining the predicted and measured spectra. Our work showcases how to combine virtual and real diagnostics in order to provide heterogeneous and reliable mixed diagnostics for scientific facilities.