论文标题

Frobenius Eigenvalues在$ \ ell $ -ADIC协同学上的划分性

Divisibility of Frobenius eigenvalues on $\ell$-adic cohomology

论文作者

Esnault, Hélène, Wan, Daqing

论文摘要

V2:对于在具有$ Q $元素的有限字段定义的投射品种,显示为代数整数,几何弗罗贝尼乌斯的特征值在$ \ ell $ addic的共同体上作用于$ \ ell $ -Adic的共同体,其比$ q $ q $ $ q $ $ - 可见性。这既促进了Deligne的完整性定理和第一作者和N. Katz证明的共同体学定理。对于超出中间维度的复杂品种的霍奇水平也证明了类似的下限,从而改善了早期的方向。我们讨论仿射案例。以前的版本在这个地方包含差距。我们感谢Dingxin Zhang注意到它。

v2: For a projective variety defined over a finite field with $q$ elements, it is shown that as algebraic integers, the eigenvalues of the geometric Frobenius acting on $\ell$-adic cohomology have higher than known $q$-divisibility beyond the middle dimension. This sharpens both Deligne's integrality theorem and the cohomological divisibility theorem proven by the first author and N. Katz. Similar lower bounds are proved for the Hodge level for a complex variety beyond the middle dimension, improving earlier results in this direction. We discuss the affine case. The previous version contained a gap at this place. We are thankful to Dingxin Zhang for noticing it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源