论文标题
PETS-SWINF:一种回归方法,该方法考虑了基于元数据的神经网络的图像,用于2021 Kaggle竞争“ Petfinder.my”
PETS-SWINF: A regression method that considers images with metadata based Neural Network for pawpularity prediction on 2021 Kaggle Competition "PetFinder.my"
论文作者
论文摘要
数以百万计的流浪动物在街头遭受痛苦或每天在世界各地的庇护所中被安乐死。为了更好地采用流浪动物,对流浪动物的爪子(可爱)进行评分非常重要,但是评估动物的爪子是非常劳动密集的事情。因此,开发一种分数动物斑点的算法引起了迫切关注的兴趣。但是,Kaggle中的数据集不仅具有图像,还具有描述图像的元数据。大多数方法基本上都集中在近年来最先进的图像回归方法上,但是没有很好的方法来处理图像的元数据。为了应对上述挑战,本文提出了一个称为Pets-Swinf的图像回归模型,该模型考虑了图像的元数据。我们的结果基于Kaggle竞争的数据集“ Petfinder.my”,表明Pets-Swinf比仅基于基于的图像模型具有优势。我们的结果表明,测试数据集上提出的模型的RMSE损失为17.71876,但没有元数据为17.76449。提出的方法的优点是,Pets-Swinf可以考虑元数据的低阶和高阶特征,并自适应地调整图像模型和元数据模型的权重。表现很有希望,因为我们的Leadboard得分在3545支球队(金牌)中排名15,目前在挑战“ Petfinder.my”中参加2021 Kaggle比赛。
Millions of stray animals suffer on the streets or are euthanized in shelters every day around the world. In order to better adopt stray animals, scoring the pawpularity (cuteness) of stray animals is very important, but evaluating the pawpularity of animals is a very labor-intensive thing. Consequently, there has been an urgent surge of interest to develop an algorithm that scores pawpularity of animals. However, the dataset in Kaggle not only has images, but also metadata describing images. Most methods basically focus on the most advanced image regression methods in recent years, but there is no good method to deal with the metadata of images. To address the above challenges, the paper proposes an image regression model called PETS-SWINF that considers metadata of the images. Our results based on a dataset of Kaggle competition, "PetFinder.my", show that PETS-SWINF has an advantage over only based images models. Our results shows that the RMSE loss of the proposed model on the test dataset is 17.71876 but 17.76449 without metadata. The advantage of the proposed method is that PETS-SWINF can consider both low-order and high-order features of metadata, and adaptively adjust the weights of the image model and the metadata model. The performance is promising as our leadboard score is ranked 15 out of 3545 teams (Gold medal) currently for 2021 Kaggle competition on the challenge "PetFinder.my".