论文标题

用树突神经元建模基于重复的声学和视觉来源

Modeling the Repetition-based Recovering of Acoustic and Visual Sources with Dendritic Neurons

论文作者

Dellaferrera, Giorgia, Asabuki, Toshitake, Fukai, Tomoki

论文摘要

在自然的听觉环境中,声学信号源自不同声源的时间叠加。从声音模棱两可的混合物中推断单个来源的问题称为盲源分解。关于人类的实验表明,听觉系统可以将声源识别为嵌入声学输入中的重复模式。源重复产生的时间规律性可以检测并用于隔离。具体来说,听众可以在不同的混合物中识别多次发生的声音,但仅在单个混合物中听到的声音不会听到。但是,尚未探索是否可以对这种行为进行计算建模。在这里,我们提出了一个受生物学启发的计​​算模型,以对声刺激的混合物序列进行盲目分离。我们的方法依赖于采用Hebbian样学习规则训练的母系神经元模型,该模型可以检测突触输入中反复出现的时空模式。我们表明,我们模型的隔离功能让人联想到人类绩效的特征,这些实验环境涉及具有自然属性的合成声音。此外,我们扩展了研究,以研究种族隔离在尚未使用人类受试者(即自然声音和图像)的任务设置上的特性。总体而言,我们的工作表明,体育神经元模型提供了一种有希望的神经启发的学习策略,以说明脑部分离能力的特征,并对未经测试的实验环境进行预测。

In natural auditory environments, acoustic signals originate from the temporal superimposition of different sound sources. The problem of inferring individual sources from ambiguous mixtures of sounds is known as blind source decomposition. Experiments on humans have demonstrated that the auditory system can identify sound sources as repeating patterns embedded in the acoustic input. Source repetition produces temporal regularities that can be detected and used for segregation. Specifically, listeners can identify sounds occurring more than once across different mixtures, but not sounds heard only in a single mixture. However, whether such a behaviour can be computationally modelled has not yet been explored. Here, we propose a biologically inspired computational model to perform blind source separation on sequences of mixtures of acoustic stimuli. Our method relies on a somatodendritic neuron model trained with a Hebbian-like learning rule which can detect spatio-temporal patterns recurring in synaptic inputs. We show that the segregation capabilities of our model are reminiscent of the features of human performance in a variety of experimental settings involving synthesized sounds with naturalistic properties. Furthermore, we extend the study to investigate the properties of segregation on task settings not yet explored with human subjects, namely natural sounds and images. Overall, our work suggests that somatodendritic neuron models offer a promising neuro-inspired learning strategy to account for the characteristics of the brain segregation capabilities as well as to make predictions on yet untested experimental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源