论文标题

减少线性可逆量子电路的深度

Reducing the Depth of Linear Reversible Quantum Circuits

论文作者

de Brugière, Timothée Goubault, Baboulin, Marc, Valiron, Benoît, Martiel, Simon, Allouche, Cyril

论文摘要

在量子计算量子位的分流时间中,确定可用的计算时间,使用当前硬件时,此时间非常有限。在本文中,我们最大程度地减少了被称为线性可逆电路的一类电路的执行时间(深度),该电路在量子计算中具有许多应用(例如,稳定器电路,CNOT+T电路等)。我们提出了一种划分和征服算法的实际表述,该算法产生的量子电路是现有算法所产生的算法的两倍。在最坏情况下,我们改善了深度的理论上界限。我们还基于成本最小化提出了贪婪的算法,以找到针对小型或简单操作员的最佳电路。总体而言,我们设法始终减少一类可逆功能的总深度,无需附件的情况下节省了92%,并且在可用的辅助量子台时高达99%。

In quantum computing the decoherence time of the qubits determines the computation time available and this time is very limited when using current hardware. In this paper we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, CNOT+T circuits, etc.). We propose a practical formulation of a divide and conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源