论文标题

手性分解的截短的保形空间方法

Chirally Factorised Truncated Conformal Space Approach

论文作者

Horvath, D. X., Hodsagi, K., Takacs, G.

论文摘要

截短的保形空间方法(TCSA)是计算光谱,算子矩阵元素和量子场理论中的时间演变的高效方法,定义为1+1维相结合场理论的相关扰动。但是,与其他精确的对角线化方法类似,TCSA被“维度的诅咒”骑行:希尔伯特空间的维度随着截断水平的(平方根)的成倍增加而呈指数增长,从而通过可用的内存资源限制了其精度。在这里,我们描述了一种算法,该算法利用了与周期性边界条件相结合场理论的手性分解特性,以实现截断水平的实质性改善。此处介绍的手性分解的TCSA(CFTCSA)算法与指定格式描述必要的CFT数据的输入一起使用。通过给定的计算资源,它使得可以更精确的计算,并将方法扩展到需要大型希尔伯特空间维度的问题。实际上,它已经用于许多最近的作品,从确定形式,通过研究拓扑激发到非平衡动力学的限制。除了对算法的描述外,该算法的MATLAB实现还作为辅助文件软件包提供,并补充了示例代码计算频谱,矩阵元素和时间演化,以及三种不同量子场理论的CFT数据。我们还提供了一个详细的操作指南,用于构建具有中央电荷C <1的Virasoro最小模型所需的CFT数据,以及C = 1的无质量自由玻色子。

Truncated Conformal Space Approach (TCSA) is a highly efficient method to compute spectra, operator matrix elements and time evolution in quantum field theories defined as relevant perturbations of 1+1-dimensional conformal field theories. However, similarly to other exact diagonalisation methods, TCSA is ridden with the "curse of dimensionality": the dimension of the Hilbert space increases exponentially with the (square root of the) truncation level, limiting its precision by the available memory resources. Here we describe an algorithm which exploits the chiral factorisation property of conformal field theory with periodic boundary conditions to achieve a substantial improvement in the truncation level. The Chirally Factorised TCSA (CFTCSA) algorithm presented here works with inputs describing the necessary CFT data in a specified format. It makes possible much more precise calculations with given computing resources and extends the reach of the method to problems requiring large Hilbert space dimensions. In fact, it has already been used in a number of recent works ranging from determination of form factors, through studying confinement of topological excitations to non-equilibrium dynamics. Besides the description of the algorithm, a MATLAB implementation of the algorithm is also provided as an ancillary file package, supplemented with example codes computing spectra, matrix elements and time evolution, and with CFT data for three different quantum field theories. We also give a detailed how-to guide for constructing the required CFT data for Virasoro minimal models with central charge c<1, and for the massless free boson with c=1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源