论文标题

快速和沉重的脱节加权匹配,以供需求吸引数据中心拓扑

Fast and Heavy Disjoint Weighted Matchings for Demand-Aware Datacenter Topologies

论文作者

Hanauer, Kathrin, Henzinger, Monika, Schmid, Stefan, Trummer, Jonathan

论文摘要

可重新配置的光学拓扑有望通过以需求感知方式动态优化物理网络来提高数据中心的性能。最先进的光学技术允许在微秒或更少内建立和更新直接连接性(以边缘匹配的形式)。但是,为了完全利用需求中的时间结构,这种细粒度的重新配置还需要快速算法来优化互连匹配。 本文启动了快速算法的研究以在图形中查找k脱节的重型匹配,这是由于希望对可重构网络的最大需求的愿望进行的激励。我们根据迭代匹配,B匹配,边缘着色和节点级别介绍和分析六种算法。我们表明,问题通常是NP-HARD并研究可实现的近似比。 对我们对现实世界和合成痕迹的算法进行了广泛的经验评估(总共88个),包括在Facebook数据中心和HPC簇中收集的痕迹,这表明我们的所有算法都提供了高质量的匹配,并且在95%或更多的最佳解决方案中都非常快。但是,运行时间有很大差异,什么是最佳算法取决于K和可接受的运行时质量折衷。

Reconfigurable optical topologies promise to improve the performance in datacenters by dynamically optimizing the physical network in a demand-aware manner. State-of-the-art optical technologies allow to establish and update direct connectivity (in the form of edge-disjoint matchings) between top-of-rack switches within microseconds or less. However, to fully exploit temporal structure in the demand, such fine-grained reconfigurations also require fast algorithms for optimizing the interconnecting matchings. Motivated by the desire to offload a maximum amount of demand to the reconfigurable network, this paper initiates the study of fast algorithms to find k disjoint heavy matchings in graphs. We present and analyze six algorithms, based on iterative matchings, b-matching, edge coloring, and node-rankings. We show that the problem is generally NP-hard and study the achievable approximation ratios. An extensive empirical evaluation of our algorithms on both real-world and synthetic traces (88 in total), including traces collected in Facebook datacenters and in HPC clusters reveals that all our algorithms provide high-quality matchings, and also very fast ones come within 95% or more of the best solution. However, the running times differ significantly and what is the best algorithm depends on k and the acceptable runtime-quality tradeoff.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源