论文标题

残基类别和不可约多项式的生成器中无方的平滑多项式

Square-free smooth polynomials in residue classes and generators of irreducible polynomials

论文作者

Bagshaw, Christian

论文摘要

在A. Booker and C. Pomerance(2017)的基础上,我们证明,对于Prime Power $ Q \ geq 7 $,每个残留类别模式都不可及的多项式$ f \ in \ Mathbb {f} _q [x] $具有非稳定的,无依赖的代表性的$ few –1 $ few –1 $ f in \ mathbb {f} _q [x] $ n \ mathbb {f} _q [x] $ a i;我们还将应用于生成不可约多项式的序列。

Building upon the work of A. Booker and C. Pomerance (2017), we prove that for a prime power $q \geq 7$, every residue class modulo an irreducible polynomial $F \in \mathbb{F}_q[X]$ has a non-constant, square-free representative which has no irreducible factors of degree exceeding $\text{deg}~F -1$. We also give applications to generating sequences of irreducible polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源