论文标题

最小的可构造集

Minimal Constructible Sets

论文作者

Garcia, Jorge, Bongers, Rosemarie, Detgen, Jonathan, Morales, Walter

论文摘要

鉴于最初的集合家族,我们可能会采用该家族中包含的集合的工会,交叉点和补充,以形成新的集合;我们的施工过程是递归完成的,直到我们获得最后一个家庭为止。这项研究中遇到的问题包括到达最后一个家庭所需的最小步骤以及最后一个家庭的特征;我们解决了所有这些问题。我们还定义了一类简单的家庭($ n $ - 最小的构造),并分析了分区与可分离性(我们的新概念)之间的关系,这些关系会带来有趣的结果,例如基于产生有限代数的分区找到家庭。我们证明了许多关于$ n $少数可构造式家庭的新结果;一个主要的结果是,每个有限的代数都有一个生成族,该家族为所有天然$ n $均可构造$ n $ nimimal,我们计算产生代数所需的最小步骤数。另一个有趣的结果是该施工过程与Baire的定理之间建立了联系。这项工作有许多可能的应用程序,尤其是在经济学和计算机科学领域。

Given an initial family of sets, we may take unions, intersections and complements of the sets contained in this family in order to form a new collection of sets; our construction process is done recursively until we obtain the last family. Problems encountered in this research include the minimum number of steps required to arrive to the last family as well as a characterization of that last family; we solve all those problems. We also define a class of simple families ($n$-minimal constructible) and we analyze the relationships between partitions and separability (our new concept) that lead to interesting results such as finding families based on partitions that generate finite algebras. We prove a number of new results about $n$-minimal constructible families; one major result is that every finite algebra of sets has a generating family which is $n$-minimal constructible for all natural $n$ and we compute the minimum number of steps required to generate an algebra. Another interesting result is a connection between this construction process and Baire's Theorem. This work has a number of possible applications, particularly in the fields of economics and computer science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源