论文标题

锗双量子井中的高驾驶孔双层

A high-mobility hole bilayer in a germanium double quantum well

论文作者

Tosato, A., Ferrari, B. M., Sammak, A., Hamilton, A. R., Veldhorst, M., Virgilio, M., Scappucci, G.

论文摘要

我们在紧张的锗双量子孔中设计,制造和研究一个孔双层。双重量子井型晶体管的磁转运表征是栅极电压的函数,显示了两个孔通道的人口,高组合的迁移率为3.34 $ \ times $ 10 $^5 $^5 $ cm $^2 $/vs且低易经密度2.38 $ \ times $ 10 $^$^$ 10 $^{10} $ CM $ CM $ cm cm $ cm^$ cm我们从Landau粉丝图的干扰模式中解决了渠道的个体人群。密度为2.0 $ \ times $ 10 $^{11} $ cm $^{ - 2} $,系统具有共鸣,我们观察到了前两个双层子带的反划分,其特征在于,其对称 - 抗敌人的差距为$ \ sim $ 0.69 $ 0.69 MEV,与Schrouroutions schrouster-schrouster-posiSsimentions相关。

We design, fabricate, and study a hole bilayer in a strained germanium double quantum well. Magnetotransport characterisation of double quantum well field-effect transistors as a function of gate voltage reveals the population of two hole channels with a high combined mobility of 3.34$\times$10$^5$ cm$^2$/Vs and a low percolation density of 2.38$\times$10$^{10}$ cm$^{-2}$. We resolve the individual population of the channels from the interference patterns of the Landau fan diagram. At a density of 2.0$\times$10$^{11}$ cm$^{-2}$ the system is in resonance and we observe an anti-crossing of the first two bilayer subbands characterized by a symmetric-antisymmetric gap of $\sim$0.69 meV, in agreement with Schrödinger-Poisson simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源