论文标题
在单位球体扰动中获得的椭圆形的拉普拉斯人的特征值
On the eigenvalues of the Laplacian on ellipsoids obtained as perturbation of unit sphere
论文作者
论文摘要
我们研究了椭圆形的拉普拉斯元素的特征值,这些椭圆形是在二维数中以标准欧几里得单位球的扰动而获得的。这些特征值与标准欧几里得单位球体的比较是在高斯曲率条件下获得的,这与在紧凑型利曼尼亚歧管上的第一个正征值上的Lichnerowicz定理一致。
We study the eigenvalues of the Laplacian on ellipsoids that are obtained as perturbations of the standard Euclidean unit sphere in dimension two. A comparison of these eigenvalues with those of the standard Euclidean unit sphere is obtained under a Gaussian curvature condition, in line with the Lichnerowicz theorem on the first positive eigenvalue on a compact Riemannian manifold.