论文标题
在Lieb-Robinson上的双括号流
On Lieb-Robinson Bounds for the Double Bracket Flow
论文作者
论文摘要
我们考虑开发以双括号流程的Lieb-Robinson开发的可能性。这是一个微分方程$$ \ partial_b h(b)= [[v,h(b)],h(b)] $$,可用于对角度化汉密尔顿人。在这里,$ v $是固定的,$ h(0)= h $。我们认为(但不能证明)$ h(b)$不需要收敛到无限$ b $在无限体积限制中的限制,甚至假设在$ h(0)$上有几个条件。但是,我们证明了自由费米昂系统的双支气流量的所有$ b $的Lieb-Robinson界限,但是使用控制参数$ b $,该范围增加了\ emph {指数性}。
We consider the possibility of developing a Lieb-Robinson bound for the double bracket flow. This is a differential equation $$\partial_B H(B)=[[V,H(B)],H(B)]$$ which may be used to diagonalize Hamiltonians. Here, $V$ is fixed and $H(0)=H$. We argue (but do not prove) that $H(B)$ need not converge to a limit for nonzero real $B$ in the infinite volume limit, even assuming several conditions on $H(0)$. However, we prove Lieb-Robinson bounds for all $B$ for the double-bracket flow for free fermion systems, but the range increases \emph{exponentially} with the control parameter $B$.