论文标题

排名代码,半场和平均关键问题

Rank-Metric Codes, Semifields, and the Average Critical Problem

论文作者

Gruica, Anina, Ravagnani, Alberto, Sheekey, John, Zullo, Ferdinando

论文摘要

我们研究了两个基本问题与编码理论和组合几何形状相交,重点是它们的联系。这些是计算等级度量中MRD代码的渐近密度的问题,以及Crapo和Rota组合几何形状的关键问题。使用Semifield理论的方法,我们得出了两个平方MRD代码的密度函数的两个下限。当矩阵尺寸为质量数时,第一界很清晰,并且基础场足够大,而第二个界限适用于二进制场。然后,我们对组合几何形状的关键问题进行了新的了解,从定性的,通常是渐近的观点来接近它。我们说明了这个非常经典的问题与计算MRD代码的渐近密度之间的联系。最后,我们研究了等级度量中一些特殊代码系列的渐近密度,包括对称,交替和遗传学的代码。特别是,我们表明这三种情况下的最佳代码很少。

We investigate two fundamental questions intersecting coding theory and combinatorial geometry, with emphasis on their connections. These are the problem of computing the asymptotic density of MRD codes in the rank metric, and the Critical Problem for combinatorial geometries by Crapo and Rota. Using methods from semifield theory, we derive two lower bounds for the density function of full-rank, square MRD codes. The first bound is sharp when the matrix size is a prime number and the underlying field is sufficiently large, while the second bound applies to the binary field. We then take a new look at the Critical Problem for combinatorial geometries, approaching it from a qualitative, often asymptotic, viewpoint. We illustrate the connection between this very classical problem and that of computing the asymptotic density of MRD codes. Finally, we study the asymptotic density of some special families of codes in the rank metric, including the symmetric, alternating and Hermitian ones. In particular, we show that the optimal codes in these three contexts are sparse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源