论文标题

Klexikon:用于联合摘要和简化的德国数据集

Klexikon: A German Dataset for Joint Summarization and Simplification

论文作者

Aumiller, Dennis, Gertz, Michael

论文摘要

传统上,文本简化被视为一项单语翻译任务,其中源文本及其简化的对应物之间的句子与培训保持一致。但是,尤其是对于更长的输入文档,总结文本(或完全删除相关内容)在简化过程中起重要作用,目前在现有数据集中尚未反映出该过程。同时,非英语语言的资源通常很少,并且对于培训新解决方案而言是过于刺激的。为了解决这个问题,我们对可以共同总结和简化长源文档的系统提出了核心要求。我们进一步描述了基于德国维基百科和德国儿童词典“ klexikon”的新数据集的创建,用于简化和摘要,包括近2900个文档。我们发布了一个与文档一致的版本,特别突出了摘要方面,并提供了统计证据,表明此资源也非常适合简化。代码和数据可在GitHub上找到:https://github.com/dennlinger/klexikon

Traditionally, Text Simplification is treated as a monolingual translation task where sentences between source texts and their simplified counterparts are aligned for training. However, especially for longer input documents, summarizing the text (or dropping less relevant content altogether) plays an important role in the simplification process, which is currently not reflected in existing datasets. Simultaneously, resources for non-English languages are scarce in general and prohibitive for training new solutions. To tackle this problem, we pose core requirements for a system that can jointly summarize and simplify long source documents. We further describe the creation of a new dataset for joint Text Simplification and Summarization based on German Wikipedia and the German children's lexicon "Klexikon", consisting of almost 2900 documents. We release a document-aligned version that particularly highlights the summarization aspect, and provide statistical evidence that this resource is well suited to simplification as well. Code and data are available on Github: https://github.com/dennlinger/klexikon

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源