论文标题

基于超声图像纹理特征的乳腺癌诊断的可解释的合奏机器学习

Explainable Ensemble Machine Learning for Breast Cancer Diagnosis based on Ultrasound Image Texture Features

论文作者

Rezazadeh, Alireza, Jafarian, Yasamin, Kord, Ali

论文摘要

图像分类广泛用于建立用于乳腺癌诊断的预测模型。大多数现有的方法绝大多数都依赖深度卷积网络来构建此类诊断管道。这些模型体系结构虽然在性能方面出色,但它是黑框系统,可最少了解其预测背后的内部逻辑。这是一个主要缺点,因为预测的解释性对于诸如癌症诊断等应用至关重要。在本文中,我们通过根据超声图像提出可解释的机器学习管道来解决此问题。我们提取超声图像的一阶和二阶纹理特征,并使用它们来构建决策树分类器的概率集合。每个决策树都学会通过学习图像的纹理特征的一组强大决策阈值来分类输入超声图像。然后,可以通过分解学习的决策树来解释模型预测的决策路径。我们的结果表明,我们提出的框架在可以解释的同时实现了很高的预测性能。

Image classification is widely used to build predictive models for breast cancer diagnosis. Most existing approaches overwhelmingly rely on deep convolutional networks to build such diagnosis pipelines. These model architectures, although remarkable in performance, are black-box systems that provide minimal insight into the inner logic behind their predictions. This is a major drawback as the explainability of prediction is vital for applications such as cancer diagnosis. In this paper, we address this issue by proposing an explainable machine learning pipeline for breast cancer diagnosis based on ultrasound images. We extract first- and second-order texture features of the ultrasound images and use them to build a probabilistic ensemble of decision tree classifiers. Each decision tree learns to classify the input ultrasound image by learning a set of robust decision thresholds for texture features of the image. The decision path of the model predictions can then be interpreted by decomposing the learned decision trees. Our results show that our proposed framework achieves high predictive performance while being explainable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源