论文标题

在动量空间TMD中解开长距离和短距离

Disentangling Long and Short Distances in Momentum-Space TMDs

论文作者

Ebert, Markus A., Michel, Johannes K. L., Stewart, Iain W., Sun, Zhiquan

论文摘要

通过屏蔽Landau Pole的处方,提取非视扰TMD物理学的提取使得纠缠于势头空间中的长长和短途贡献。然后,使用不同的处方会比较拟合结果的基本非扰动贡献,这是自身没有意义的。我们提出了一种独立于模型的方法,将动量空间可观察到扰动域限制。此方法基于一组积分函数,该功能在常规位置空间操作员产品扩展(OPE)中线性作用。可以从$λ_{\ rm qcd}/k_t $中系统地将积分截断的伪像。我们证明,该方法可用于计算$ k_t \ le k_t^\ mathrm {cut} $的TMD PDF的累积积分,从界线PDF表示,这既考虑辐射校正和进化效果。这产生了一种系统的方法,可以纠正TMD PDF集成到共线PDF的幼稚图片,对于非极化的夸克分布,我们发现,当选择重新归一化的量表附近接近$ k_t^\ mathrm {cut} $时,此类校正是一个百分比效应。我们还表明,当补充实验数据并改善扰动输入时,我们的积分功能将使与模型无关的限制能够对Collins-Soper-Soper-Soper内核和内在TMD分布的非扰动OPE贡献。

The extraction of nonperturbative TMD physics is made challenging by prescriptions that shield the Landau pole, which entangle long- and short-distance contributions in momentum space. The use of different prescriptions then makes the comparison of fit results for underlying nonperturbative contributions not meaningful on their own. We propose a model-independent method to restrict momentum-space observables to the perturbative domain. This method is based on a set of integral functionals that act linearly on terms in the conventional position-space operator product expansion (OPE). Artifacts from the truncation of the integral can be systematically pushed to higher powers in $Λ_{\rm QCD}/k_T$. We demonstrate that this method can be used to compute the cumulative integral of TMD PDFs over $k_T \le k_T^\mathrm{cut}$ in terms of collinear PDFs, accounting for both radiative corrections and evolution effects. This yields a systematic way of correcting the naive picture where the TMD PDF integrates to a collinear PDF, and for unpolarized quark distributions we find that when renormalization scales are chosen near $k_T^\mathrm{cut}$, such corrections are a percent-level effect. We also show that, when supplemented with experimental data and improved perturbative inputs, our integral functionals will enable model-independent limits to be put on the nonperturbative OPE contributions to the Collins-Soper kernel and intrinsic TMD distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源