论文标题
格伦斯基系数的两种应用在单价函数理论中
Two applications of Grunsky coefficients in the theory of univalent functions
论文作者
论文摘要
令$ \ mathcal {s} $表示在单位磁盘$ {\ MathBb d} = \ {z | | | | <1 \} $中是分析性和无数的功能类别$ f $的类别,并用$ f(z)= z+\ sum_ = s+sum_ {n = 2}^{\ f(z)使用基于Grusky系数的方法,我们研究了类$ \ Mathcal {s} $的两个问题:第四对数系数和系数差差$ | A_5 | A_5 | - | A_4 | $的估算值。
Let $\mathcal{S}$ denote the class of functions $f$ which are analytic and univalent in the unit disk ${\mathbb D}=\{z:|z|<1\}$ and normalized with $f(z)=z+\sum_{n=2}^{\infty} a_n z^n$. Using a method based on Grusky coefficients we study two problems over the class $\mathcal{S}$: estimate of the fourth logarithmic coefficient and upper bound of the coefficient difference $|a_5|-|a_4|$.