论文标题

前瞻性学习:对未来的原则推断

Prospective Learning: Principled Extrapolation to the Future

论文作者

De Silva, Ashwin, Ramesh, Rahul, Ungar, Lyle, Shuler, Marshall Hussain, Cowan, Noah J., Platt, Michael, Li, Chen, Isik, Leyla, Roh, Seung-Eon, Charles, Adam, Venkataraman, Archana, Caffo, Brian, How, Javier J., Kebschull, Justus M, Krakauer, John W., Bichuch, Maxim, Kinfu, Kaleab Alemayehu, Yezerets, Eva, Jayaraman, Dinesh, Shin, Jong M., Villar, Soledad, Phillips, Ian, Priebe, Carey E., Hartung, Thomas, Miller, Michael I., Dey, Jayanta, Ningyuan, Huang, Eaton, Eric, Etienne-Cummings, Ralph, Ogburn, Elizabeth L., Burns, Randal, Osuagwu, Onyema, Mensh, Brett, Muotri, Alysson R., Brown, Julia, White, Chris, Yang, Weiwei, Rusu, Andrei A., Verstynen, Timothy, Kording, Konrad P., Chaudhari, Pratik, Vogelstein, Joshua T.

论文摘要

学习是一个可以根据过去经验更新决策规则的过程,从而提高了未来的绩效。传统上,机器学习通常是根据以下假设评估的,即未来在分布或对手方面将与过去相同。但是,对于现实世界中许多问题,这些假设可能太乐观或悲观。现实世界的场景在多个时空尺度上以部分可预测的动态发展。在这里,我们将学习问题重新制定到一个围绕这种动态未来观念的一个部分可以学习的问题。我们猜想某些任务序列不是回顾性地学习(其中数据分布是固定的),而是前瞻性地学习(其中分布可能是动态的),这表明前瞻性学习在体型上比回顾性学习更加困难。我们认为,前瞻性学习更准确地描述了许多现实世界中的问题(1)当前阻碍了现有的人工智能解决方案和/或(2)缺乏对自然智能如何解决这些问题的充分解释。因此,学习前瞻性学习将导致对自然和人工智能中目前挑战的更深入的见解和解决方案。

Learning is a process which can update decision rules, based on past experience, such that future performance improves. Traditionally, machine learning is often evaluated under the assumption that the future will be identical to the past in distribution or change adversarially. But these assumptions can be either too optimistic or pessimistic for many problems in the real world. Real world scenarios evolve over multiple spatiotemporal scales with partially predictable dynamics. Here we reformulate the learning problem to one that centers around this idea of dynamic futures that are partially learnable. We conjecture that certain sequences of tasks are not retrospectively learnable (in which the data distribution is fixed), but are prospectively learnable (in which distributions may be dynamic), suggesting that prospective learning is more difficult in kind than retrospective learning. We argue that prospective learning more accurately characterizes many real world problems that (1) currently stymie existing artificial intelligence solutions and/or (2) lack adequate explanations for how natural intelligences solve them. Thus, studying prospective learning will lead to deeper insights and solutions to currently vexing challenges in both natural and artificial intelligences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源