论文标题
一般多播的一般费率分裂的优化框架
An Optimization Framework for General Rate Splitting for General Multicast
论文作者
论文摘要
身临其境的视频,例如虚拟现实(VR)和多视频视频,在受欢迎程度上越来越受欢迎。它的无线流是一般多播的一个实例,扩展了传统的单播和多播,其有效设计仍然开放。本文研究了一般多播的一般率分裂。具体而言,我们考虑了多载波单细胞无线网络,其中多端基地基站(BS)通过一般多播与多个单人体用户通信。我们考虑在BS上进行线性波束形成,并在慢速褪色和快速褪色的情况下对每个用户的关节解码。在缓慢的褪色情况下,我们考虑了加权总和平均速率的最大化,这是一个具有挑战性的非凸随机问题,具有许多变量。为了降低计算复杂性,我们将原始的非covex随机问题解散为多个非convex确定性问题,一个针对每个系统通道状态。然后,我们为每个确定性问题提出了一种迭代算法,以使用凹形 - 凸面程序(CCCP)获得Karush-Kuhn-Tucker(KKT)点。在快速褪色的情况下,我们考虑了加权总和的最大化。对于缓慢褪色的情况而言,这个问题比这个问题更具挑战性,因为它是不可分开的。首先,我们提出了一种随机迭代算法,以使用随机连续的凸近似(SSCA)和确切的惩罚方法获得KKT点。然后,我们提出了两种低复杂性迭代算法,以使用近似值和CCCP来获得两种通道分布的可行性点。所提出的优化框架将现有的框架推广为各种服务的费率分配。最后,在两种情况下,我们在数值上显示了对现有方案的大量收益。
Immersive video, such as virtual reality (VR) and multi-view videos, is growing in popularity. Its wireless streaming is an instance of general multicast, extending conventional unicast and multicast, whose effective design is still open. This paper investigates general rate splitting for general multicast. Specifically, we consider a multi-carrier single-cell wireless network where a multi-antenna base station (BS) communicates to multiple single-antenna users via general multicast. We consider linear beamforming at the BS and joint decoding at each user in the slow fading and fast fading scenarios. In the slow fading scenario, we consider the maximization of the weighted sum average rate, which is a challenging nonconvex stochastic problem with numerous variables. To reduce computational complexity, we decouple the original nonconvex stochastic problem into multiple nonconvex deterministic problems, one for each system channel state. Then, we propose an iterative algorithm for each deterministic problem to obtain a Karush-Kuhn-Tucker (KKT) point using the concave-convex procedure (CCCP). In the fast fading scenario, we consider the maximization of the weighted sum ergodic rate. This problem is more challenging than the one for the slow fading scenario, as it is not separable. First, we propose a stochastic iterative algorithm to obtain a KKT point using stochastic successive convex approximation (SSCA) and the exact penalty method. Then, we propose two low-complexity iterative algorithms to obtain feasible points with promising performance for two cases of channel distributions using approximation and CCCP. The proposed optimization framework generalizes the existing ones for rate splitting for various types of services. Finally, we numerically show substantial gains of the proposed solutions over existing schemes in both scenarios.