论文标题

智能家居中合成数据生成的变异自动编码器生成对抗网络

Variational Autoencoder Generative Adversarial Network for Synthetic Data Generation in Smart Home

论文作者

Razghandi, Mina, Zhou, Hao, Erol-Kantarci, Melike, Turgut, Damla

论文摘要

数据是智能电网应用程序的数据科学和机器学习技术的燃料,类似于许多其他领域。但是,由于隐私问题,数据大小,数据质量等,数据的可用性可能是一个问题。为此,在本文中,我们提出了一个变异自动编码器生成的对抗网络(VAE-GAN)作为智能网格数据生成模型,该模型能够学习各种类型的数据分布并从同一分布中生成合理的样本,而无需对培训阶段之前的数据进行任何先前的分析。在提出的模型Vanilla GAN网络和实际数据分布产生的合成数据(电负载和PV生产)之间,以评估我们的模型的性能。此外,我们使用五个关键统计参数来描述智能电网数据分布,并在模型和真实数据生成的合成数据之间进行比较。实验表明,提出的合成数据生成模型的表现优于香草GAN网络。 VAE-GAN合成数据的分布与真实数据的分布最可比。

Data is the fuel of data science and machine learning techniques for smart grid applications, similar to many other fields. However, the availability of data can be an issue due to privacy concerns, data size, data quality, and so on. To this end, in this paper, we propose a Variational AutoEncoder Generative Adversarial Network (VAE-GAN) as a smart grid data generative model which is capable of learning various types of data distributions and generating plausible samples from the same distribution without performing any prior analysis on the data before the training phase.We compared the Kullback-Leibler (KL) divergence, maximum mean discrepancy (MMD), and Wasserstein distance between the synthetic data (electrical load and PV production) distribution generated by the proposed model, vanilla GAN network, and the real data distribution, to evaluate the performance of our model. Furthermore, we used five key statistical parameters to describe the smart grid data distribution and compared them between synthetic data generated by both models and real data. Experiments indicate that the proposed synthetic data generative model outperforms the vanilla GAN network. The distribution of VAE-GAN synthetic data is the most comparable to that of real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源