论文标题
Seiberg-Witten理论关于有限覆盖自旋空间的4个manifolds的理论
Seiberg-Witten theory on finite covering spaces of spin 4-manifolds
论文作者
论文摘要
当有限群体自由作用于旋转4个manifold时,我们计算了鲍伊尔 - 武术学位。在小组是两个订单功率循环的情况下,布莱恩给出了公式及其应用。当小组具有奇数级时,我们已经处理了案例。特别是,当顺序为奇数时,我们给出了该度的公式。我们的方法是在功能空间的有限维近似值上使用表示理论方法。
We compute the equivariant Bauer-Furuta degree, when a finite group acts freely on a spin 4-manifold. In the case when the group is cyclic of order power of two, Bryan gave a formula and its applications. We have treated the case when the group has order of odd degree. In particular we gave a formula of the degree when the order is odd-prime. Our approach is to use a representation-theoretic method on finite dimensional approximations of the functional spaces.